Helical water chain mediated proton conductivity in homochiral metal-organic frameworks with unprecedented zeolitic unh-topology.

نویسندگان

  • Subash Chandra Sahoo
  • Tanay Kundu
  • Rahul Banerjee
چکیده

Four new homochiral metal-organic framework (MOF) isomers, [Zn(l-L(Cl))(Cl)](H(2)O)(2) (1), [Zn(l-L(Br))(Br)](H(2)O)(2) (2), [Zn(d-L(Cl))(Cl)](H(2)O)(2) (3), and [Zn(d-L(Br))(Br)](H(2)O)(2) (4) [L = 3-methyl-2-(pyridin-4-ylmethylamino)butanoic acid], have been synthesized by using a derivative of L-/D-valine and Zn(CH(3)COO)(2)·2H(2)O. A three-periodic lattice with a parallel 1D helical channel was formed along the crystallographic c-axis. Molecular rearrangement results in an unprecedented zeolitic unh-topology in 1-4. In each case, two lattice water molecules (one H-bonded to halogen atoms) form a secondary helical continuous water chain inside the molecular helix. MOFs 1 and 2 shows different water adsorption properties and hence different water affinity. The arrangement of water molecules inside the channel was monitored by variable-temperature single-crystal X-ray diffraction, which indicated that MOF 1 has a higher water holding capacity than MOF 2. In MOF 1, water escapes at 80 °C, while in 2 the same happens at a much lower temperature (∼40 °C). All the MOFs reported here shows reversible crystallization by readily reabsorbing moisture. In MOFs 1 and 2, the frameworks are stable after solvent removal, which is confirmed by a single-crystal to single-crystal transformation. MOFs 1 and 3 show high proton conductivity of 4.45 × 10(-5) and 4.42 × 10(-5) S cm(-1), respectively, while 2 and 4 shows zero proton conductivity. The above result is attributed to the fact that MOF 1 has a higher water holding capacity than MOF 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porous Proton Exchange Membrane Based Zeolitic Imidazolate Framework-8 (ZIF-8)

Metal-organic frameworks (MOFs) are emerging material class for the past few years due to its tailorability characteristics for various applications. However, the research and development (R&D) of MOFs is still scarce for fuel cell system. This may be due to the several difficulties faced in selecting a good MOFs-based electrolyte, which consequently affects both proton conduction and methanol ...

متن کامل

Syntheses, structures, photoluminescence and photocatalysis of chiral 3D Cd(II) frameworks from achiral mixed flexible ligands by spontaneous resolution.

Unprecedented two homochiral Cd(ii) enantiomers [Cd(dtba)(bpp)]n (1: 1P and 1M) (H2dtba = 2,2'-dithiodibenzoic acid, bpp = 1,3-bis(4-pyridyl)propane), were obtained by self-assembly with mixed achiral flexible ligands. Single-crystal X-ray diffraction analysis reveals that complexes 1P and 1M crystallize in trigonal space groups P3121 and P3221, respectively. The compounds are optically active,...

متن کامل

Carbon dioxide sensitivity of zeolitic imidazolate frameworks.

Zeolitic imidazolate frameworks of zinc, cobalt, and cadmium, including the framework ZIF-8 commercially sold as Basolite Z1200, exhibit surprising sensitivity to carbon dioxide under mild conditions. The frameworks chemically react with CO2 in the presence of moisture or liquid water to form carbonates. This effect, which has been previously not reported in metal-organic framework chemistry, p...

متن کامل

Integration of a semi-rigid proline ligand and 4,4'-bipyridine in the synthesis of homochiral metal-organic frameworks with helices.

A pair of 3-D homochiral metal-organic frameworks (HMOFs) based on a mixed semi-rigid 5-(2-carboxypyrrolidine-1-carbonyl)isophthalate (PIA) ligand and rigid 4,4'-bipyridine (bipy), [Co3((R)-PIA)2(bipy)3]·6H2O (1-D) and [Co3((S)-PIA)2(bipy)3]·6H2O (1-L) are synthesized and structurally characterized. They are enantiomers and exhibit three-dimensional open frameworks. In each structure, the PIA l...

متن کامل

Effect of Imidazole Arrangements on Proton-Conductivity in Metal-Organic Frameworks.

Imidazole molecules were frequently incorporated into porous materials to improve their proton conductivity. To investigate how different arrangements of imidazoles in metal-organic frameworks (MOFs) affect the overall proton conduction, we designed and prepared a MOF-based model system. It includes an Fe-MOF as the blank, an imidazole@Fe-MOF (Im@Fe-MOF) with physically adsorbed imidazole, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 133 44  شماره 

صفحات  -

تاریخ انتشار 2011